Showing posts with label Internal Combustion Engineer. Show all posts
Showing posts with label Internal Combustion Engineer. Show all posts

Wednesday, 6 December 2017

Learn from mistake is crucial

When you have an opportunity to make a mistake, it’s always nice to know how someone else screwed up. As Sam Levenson once said, “You must learn from the mistakes of others. You can’t possibly live long enough to make them all yourself.” Many mistakes are described in the following pages so you will, hopefully, not repeat them.

Ken Heselton, Boiler Operators’ Handbook

The Heart of Steam & ICE Engineer

The Heart of Plant Engineer and Plant Operator


“As for keeping an eye on the plant, that phrase is nothing more than a saying. If you are a manager, reading this book because operators report to you, you should know this the experienced operator keeps an ear on the plant. 


The most accurate, precise, sensitive instrument in a boiler plant is the operator’s ear. The operator knows something is amiss long before any alarm goes off because he can hear any subtle change in the sound of the plant. 


He can be up in the fidley, and notice that a pump on the plant’s lower level just shut down. Hearing isn’t the only sense that’s more acute in an operator, he “feels” the plant as well. Sounds, actually all sound is vibrations, that aren’t in the normal range of hearing are sensed either by the ear, the cheek, or through the feet. 


Certainly an operator shouldn’t be in- side a boiler turbining tubes, while he’s operating the plant but there are many maintenance activities he can perform while on duty. 


Managers with a sense of the skill of their operators will use them on overtime and off-shift to perform most of the regular maintenance.”


Ken Heselton in his book “Boiler Operator’s Handbook”

Engine Classifications


  1. Application. 
    • Automobile.
    • Truck.
    • Locomotive.
    • Light aircraft.
    • Marine.
    • Portable power system.
    • Power generation.
  2. Basic engine design.
    • Reciprocating engine (arrangement of cylinders : eg. in-line, V, radial, opposed)
    • Rotary engines (Wankel and other geometries).
  3. Working cycle.
    • Four stroke cycle (Naturally aspirated, supercharged, turbocharged)
    • Two stroke cycle (cranked chaft scavenged, supercharged and turbocharged)
  4. Valve or port design and location.
    • Overhead
    • Underhead
    • Rotary
    • Cross-scavenged
    • Loop-scavenged
    • Through or uniflow-scavenged
  5. Fuel.
    • Gasoline (or petrol)
    • Fuel oil (or diesel)
    • Natural gas
    • Liquid petroleum gas
    • Alcohols (methanol, ethanol)
    • Hydrogen
    • Duel fuel
  6. Method of mixture preparation.
    • Carburetion
    • Fuel injection into intake ports or intake manifold
    • Fuel injection into the cylinder
  7. Method of ignition.
    • Spark Ignition (SI)
    • Compression Ignition (CI)
  8. Combustion chmaber design.
    • Open chmaber (disc, wedge, hemisphere, bowl-in-piston)
    • Divided chamber (small and large auxiliary chambers, many design; eg swirl chambers, prechamvers)
  9. Method of load control.
    • Throttling of fuel and air
    • Control of fuel flow alone
    • A combination of both
  10. Method of cooling.
    • Water cooled
    • Air cooled
    • Uncooled (by natural convection and radiation)
Internel Combustion Engine Fundamentals, John B. Heywood, Page 7.

Berfikir Seperti Jurutera / Think Like An Engineer

Berfikir seperti seorang jurutera (saintis)


“Observing everything in nature helps you under- stand what’s going on in the boiler plant. 


Most of our engineering is based on learning about what happens naturally then using it to accomplish purposes like making steam. 


The formation of clouds, fog, and dew all conform to rules set up by nature. By observing them we learn cause and effect and can make it work for us. 


We can be just like Newton, sitting under the apple tree and being convinced, by an apple dropping, that there’s such a thing as gravity and we can use it to do some work for us. 


You can see how it works, then relate it to what’s happening in the boiler plant.”


Boiler Operator’s Handbook, Ken Heselton 








Tuesday, 5 December 2017

Three Types of Engines

Three Types of Engines

1. Dedicated, Mono-Fuel or Monovalent
2. Bi-Fuel or Bivalent. Natural gas or gasoline.
3. Dual-Fuel. Mixture of natural gas and diesel, ignited by a diesel "pilot". Diesel injected directly into the combustion chamber, while gas is introduced into the air intake by carburetion or by gas injection.
4. Tri-Fuel. Can operate on gasoline, ethanol, ethanol and natural gas.


2,346,788 HP / 1750 MWe Arabelle Turbine Generator The Biggest Gas Turbine

How big: You will need a nuclear power station to hold it
How powerful: 2,346,788 horsepower

This is the 1750 MWe ARABELLE turbine generator, which converts wet steam from a French nuclear generator into electricity. The blades alone weigh 176 pounds

107,389 HP Wartsila-Sulzer RTA96-C The Largest Marine Gas Engine

How big: 89 feet long and 44 feet wide, 1,820 liters per cylinder, 10,920 to 25,480 liters total
How powerful: 107,389 horsepower

The Finnish Wärtsilä-Sulzer RTA96-C powers the largest vessels in the world. It's a two-stroke turbo running on heavy fuel oil and it can be configured with six to fourteen cylinders. 

Gas Engine

gas engine is an internal combustion engine which runs on a gas fuel, such as coal gasproducer gasbiogaslandfill gas or natural gas. In the UK, the term is unambiguous. In the US, due to the widespread use of "gas" as an abbreviation for gasoline, such an engine might also be called a gaseous-fueled engine or natural gas engine or spark ignited.




Monday, 4 December 2017

Kursus Enjin Pembakaran Dalam

Kursus Enjin Pembakaran Dalam anjuran MSIEA pada 1 hingga 3hb. Disember 2017 di Lahad Datu, Sabah, Malaysia. Terima kasih atas semua peserta dari seluruh Sabah yang hadir memberikan sokongan. Selamat maju jaya dalam peperiksaan nanti.

Tiga Orang Mati Di Dalam Kernel Bunker Kilang Sawit Part II

  1. Ini adalah kisah benar yang berlaku pada tahun 2009. Ia salah satu punca yang menyebabkan JKKP mengambil tindakan drastik untuk menguatkuasakan peraturan ruang terkurung di seluruh negara.
  2. Lokasi kejadian dan syarikat terlibat, biarlah ia menjadi rahsia, namun ia patut menjadi pengajaran kepada kita yang masih berada dalam industri.
  3. Kilang ini saya jaga dari tahun 2006 hingga 2008. Sebelum saya berpindah ke syarikat lain. 
  4. Dua mangsa saya kenali kerana pernah bekerja dengan saya semasa tempoh tersebut.
  5. Ok. Kita pendekkan cerita kerana ceritanya sangatlah panjang,
  6. Sebelum kejadian :-
    • Refnery buat aduan dirt palm kernel tinggi dari Kernel Bunker No. 5.
    • Pengurus berikan arahan supaya sampling dibuat untuk palm kernel bunker No. 5.
    • Lab boy yang baru bekerja kurang 3 bulan mengambil sample. (Mangsa Pertama)
  7. Dari kanan gambar : Kernel Bunker No. 1,2,3,4,5 & 6. Lokasi kejadian (Kernel Bunker No. 5). Kernel Bunker No. 1-3 dibina awal tahun 1990an dan Kernel Bunker No. 4-6 dibina pada tahun 2004-2005.
  8. Semasa kejadian
    1. Lab boy tersebut masuk ke kernel bunker dari manhole atas dan mengambil sampel. Pengsan di dalam bunker akibat terhidu gas.
    2. Mandore (mangsa kedua) masuk ke dalam bunker untuk menyelamatkan mangsa tanpa menggunakan sebarang peralatan dan juga prosedur keselamatan.
    3. Lab Assistant (mangsa ketiga) cuba masuk ke dalam bunker pada waktu yang sama, namun berjaya di bawa naik ke atas. Mangsa meninggal semasa dalam perjalanan ke hospital.
  9. Selepas kejadian
    1. Tiga orang meninggal.
  10. Punca kemalangan
    1. Arahan tidak jelas. Tidak specifik lokasi untuk sampling. Untuk melakukan sampling, tidak perlu masuk ke dalam kernel bunker. Lokasi lebih selamat adalah menggunakan discharge point. Buang ke lantai dan buat ujian. Lebih selamat.
    2. Rekabentuk (design) gagal. Bahagian atas kernel bunker tidak perlu dipasang dinding. Cukup dengan menggunakan handrailing. Rekabentuk menggunakan dinding seperti Kernel Bunker No. 4,5&6 telah menyebabkan tidak ada pengudaraan yang mencukupi bagi mengeluarkan gas berbahaya daripada air vent di atas bunker. Ia perlu ditukarkan segera. SAYA BERHARAP, SYARIKAT TELAH MELAKUKAN UBAHSUAI untuk mengelak kejadiaan yang sama berulang pada masa hadapan.
    3. Tidak melakukan prosedur RUANG TERKURUNG.
    4. Tiada pengentahuan tentang bahaya ruang terkurung.
    5. Tiada SOP untuk sampling.
    6. Pekerja tidak kompeten.
    7. Latihan untuk pekerja baru tidak mencukupi.
  11. Tindakan penambahbaikan
    1. Ubahsuai kernel bunker. Buang dinding. Guna handrailing.
    2. Kernel bunker seperti di bawah adalah lebih baik. Bahagian tepi ada lubang untuk aliran udara (lubang tak nampak). Walaupun ada dinding hingga ke atap, ruang atas bunker terbuka dan ada lubang bahagian tepi. Berlaku pengudaraan yang baik.


Tujuan utama saya kongsi adalah untuk memastikan tempat kerja kita semua tiada risiko bahaya kepada semua pihak. AMBIL PENGAJARAN daripada punca kejadian dan buatlah penambahbaikan segera.

BUDAYA KERJA SELAMAT AMALAN KITA.

Tiga Maut Di Dalam Kernel Bunker Part I

HIRARC

1. Apa tujuan HIRARC?
Hazard Identification, Risk Assessment & Risk Control
  1. Kenalpasti jenis - jenis bahaya di tempat kerja.
  2. Buat penilaian bahaya tempat kerja.
  3. Cadangan untuk mengawal risiko bahaya di tempat kerja.
  4. Pelaksanaan kawalan risiko bahaya.
  5. Menilai semula kawalan risiko bahaya di tempat kerja.
2. HIRARC - Planning & Implementation
  1. Akta
  2. Kemalangan dan hampir kemalangan
  3. Maklumbalas dan aduan
  4. Pemeriksaan tempat kerja dan audit
  5. ERP
  6. Latihan
  7. Jawatankuasa keselamatan
  8. Polisi
  9. Audit Dalaman
  10. SOP
3. Akta 
SECTION 15(2)(A) osha 1994 "the provision and maintenance of plants and systems of work that are so far as is practicable, safe and without risks to health"


Gambar tambahan untuk nota IPD / ICE
















































sumber capaian Google